1. Condensed Matter Physics

Chair: Prof. Henrik Rønnow, Prof. Ilaria Zardo

 

This section brings together researchers who explore novel properties of condensed matter. For this, many experimental and theoretical methods are implemented to create new materials, as well as to characterise them and understand their behaviour.

In particular, the knowledge gained about the structure of the materials at the atomic level, as well as their electronic, magnetic and optical properties, provides a way to interpret their behaviour at different timescales.

This behaviour includes conductivity, magnetic order, ferroelectric polarization, elasticity and reflectivity, which are very important for technological applications that play a key role in our daily lives.

Indeed, the area of condensed matter physics is very broad and includes semiconducting and superconducting phenomena, photonics, mechanics, plasmonics, and (multi-)ferroics that can be investigated in a number of different systems such as metals, ceramics, nanostructures and nanomaterials, as well as at surfaces and interfaces.

The characterization methods are correspondingly broad and can be highly complex, with experiments being performed in the laboratory as well as at large scale facilities. These experiments are often supported by theoretical work.

 

Other organisations working in the field

NCCR MARVEL
NCCR MUST
NCCR QSIT
Swiss Society for Cryistallography (SSCR)
Swiss Neutron Science Society (SNSS)

Picture Credits:
[1] S. Nowakowska et al., Small 12, 3757 (2016)
[2] C. Becher et al., Nature Nanotechnology 10, 661 (2015)
[3] C. Donnelly et al., Phys. Rev. Lett. 114, 115501 (2015)
[4] Y. Tokunaga et al., Nat. Commun. 6, 7638 (2015)