Time, Frequency and atomic clocks

Gaetano Mileti
(gaetano.mileti@unine.ch)
Laboratoire Temps – Fréquence (LTF)
Université de Neuchâtel

Outline

1) Introduction on oscillators and atomic clocks
2) Vapor-cell atomic clocks (Rubidium)
3) Atomic beam standards (Cesium and laser cooling)
4) Hydrogen Masers
5) Optical frequency synthesizers and clocks (combs)
6) Summary

“Clock = Oscillator + Counter”

- **“Oscillator”**
 Based on a periodical event, supposedly “regular” and having a period T (earth, pendulum, spring, quartz, etc.)
 Frequency $f = 1 / T$

- **“Counter”**
 Able to count the oscillations and display the result in some manner (escapement, gear, dial, hands, etc.)

“Reference”:
Sometimes used to stabilize the oscillator and/or the clock

Laboratoire Temps – Fréquence (LTF)

Officially created on February 1st 2007
(http://www2.unine.ch/ltf)

Personnel:
Prof. P. Thomann (Director of LTF)
Dr. G. Mileti (Deputy Director of LTF)
Dr. C. Affolderbach
Dr. E. Breschi
Dr. G. Di Domenico
Dr. A. Joyet
Dr. C. Schori
V. Dolgovskiy
R. Ritayan
D. Miletic
F. Gruet
R. Scherler

Address:
Rue A. L. Breguet 1, 2000 Neuchâtel, Switzerland

1) What is a clock?

- **“Oscillator”**
 Black box having an input (power supply) and an “ideal” output: for instance an absolutely pure (accurate and stable) sinus with amplitude A and frequency ν_0
 $A\cos(2\pi\nu t)$

- **“Counter”**
 Able to count the oscillations and display the result in some manner (escapement, gear, dial, hands, etc.)

Reference:
Sometimes used to stabilize the oscillator and/or the clock

Ideal and real oscillators

- **Ideal “oscillator”** (or frequency standard)
 Black box having an input (power supply) and an “ideal” output: for instance an absolutely pure (accurate and stable) sinus with amplitude A and frequency ν_0
 $A\cos(2\pi\nu t)$

- **Real “oscillator”**
 The amplitude and the frequency of the output fluctuate. These instabilities are observed and described by various techniques in the “time domain” and in the “frequency domain”.
 $A(2\pi\nu t)$

Annual meeting of the Swiss Physical Society, UNI-Geneva, 27 March 2008
G. Mileti, Laboratoire Temps – Fréquence, Time, Frequency and Atomic Clocks

Oscillator model

\[
\text{Signal}(t) = Re\left(\frac{\gamma(t)}{2} e^{i\Phi(t)}\right)
\]

where \(\gamma(t) = \phi(t) + j \cdot q(t) = (1 + e(t)) e^{i\Phi(t)} \)

Time error: \(\frac{\Phi(t)}{2\pi} \)

\[
\text{Normalized frequency error: } \frac{\gamma(t)}{\Phi(t)} = \frac{1}{2\pi} \frac{\delta\Phi(t)}{\Phi(t)} = \frac{\delta\gamma}{\gamma} = 10^{-4} - 10^{-6}
\]

Measured frequency: \(v(t) = v_0 + \delta v(t) \)

\(\delta v(t) \): deterministic + random fluctuations

In general \(\frac{1}{\tau} \int_0^\tau \delta v(t) dt \) diverges

Allan deviation (\(\tau \)) and noise processes (\(f \))

\(\sigma_f(\tau) \)

tells us how our oscillator compares to an ideal one over the timescale \(\tau \)

- Different types of noise processes affect differently the Allan deviation;
- Different applications require different (in)stabilities at given time scales

Stabilized oscillators

Example 1 of a stabilized oscillator:
pendulum periodically stabilized after earth rotation observation

Example 2 of a stabilized oscillator:
wrist-watch periodically stabilized after comparison to a more stable / accurate clock (tower clock)

Examples 3 of a stabilized oscillator:
quartz oscillator locked to a GNSS signal (GPS, GLONASS, GALILEO ...)

Atomic clock (stabilized quartz)

Reference for the user (5 MHz)

Quartz oscillator

Feed-back

Atoms

Definition in SI system

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of cesium 133 (1967)

Frequency \(v_0 = \frac{E_e - E_i}{h} = 9192631770 \text{ Hz} \)

This would be the frequency of an atomic clock in which the atomic transition is not perturbed and the stabilization "perfect"

Atomic time (TAI) and astronomical time (UTC)

UTC-6

Leap second

Leap second
Magnetic resonance allows spin flip.

It is a frequency selective phenomenon.

In an atomic clock you exploit this phenomenon to frequency stabilise a quartz oscillator.

In each type of clock it is realised on different species, in various configurations and with different detection techniques.

Resonance line-width, line Q, signal-to-noise ratio and frequency stability

\[\Delta \omega_0 \propto \frac{1}{\tau} \]

\[Q = \frac{\omega_0}{\Delta \omega_0} \]

\[\sigma_i = \frac{0.2}{Q(S/N)^{1/2}} \]

Optical pumping (in Rb clocks)

Lamp Rb\(^{87}\)

Filter Rb\(^{85}\)

Cell Rb\(^{87}\)

Why Rb? Isotopic filtering

Excitation of a Rb lamp with an RF oscillator (~120 MHz).

Isotopic filtering with a \(^{85}\)Rb cell.
Microwave / optical double resonance

Swiss (Neuchâtel) Rubidium clocks

Worldwide space clocks (navigation)

Other applications of Rb clocks

New Rb clocks: laser optical pumping

Coherent Population Trapping (CPT)

Potential advantages of using CPT:
- No microwave cavity
- Reduced light-shift

Potential advantages:
- More efficient pumping
- Improved S/N
- Long term stability
- Power / Weight / Volume
- Redundancy

Coherent Population Trapping

Potential advantages of using CPT:
- No microwave cavity
- Reduced light-shift

New Rb clocks: laser optical pumping

Potential advantages:
- More efficient pumping
- Improved S/N
- Long term stability
- Power / Weight / Volume
- Redundancy

Worldwide space clocks (navigation)

Other applications of Rb clocks

Swiss (Neuchâtel) Rubidium clocks

Microwave / optical double resonance

Coherent Population Trapping (CPT)
Chip-scale (vapor cell) atomic clocks

Examples of (US) prototypes

Activities in UNINE

Miniature alkali vapour cells

Potential applications:
- Chip-scale frequency references
- Chip-scale atomic clocks (microwave and optical)
- Chip-scale atomic magnetometers
- Chip-scale gyroscopes

In the future:
- Atom chips
- Quantum computing
- Quantum communication

3) Atomic beam frequency standards

Potential applications:

Destruction of fringes contrast due to atomic velocity distribution
Laser-pumped beam standards

Extended-cavity and other diode lasers

Laser trapping and cooling

Application of laser cooling: atomic fountains

Pulsed fountain

Continuous fountain (Swiss primary standard)
Fundamental physics in space

Why in space?
- Long free fall conditions, long interaction times
- Large potential differences, large velocity changes, availability of long distances
- Absence of atmosphere, low noise / vibration environment

What fundamental physics?
- Probe the foundations of general relativity (equivalence principle, Lorentz invariances, universality of a free fall and gravitational redshift, constancy of gravitational and fine-structure constants, etc.) -- new physics!
- Key instruments (payload)
 - Atomic clocks (H-Masers, fountains, ion clocks, resonators) and gyroscopes
 - High stability lasers (ex: LISA), optical combs and optical synthesizers
 - Cold atoms, Bose-Einstein Condensates BEC (ex: HYPER)

For more details see: H. Dittus et al., “Lasers, clocks and drag-free control”, Springer.

ACES mission scientific goals

Cold atom clock in microgravity:
- Linewidth ≤ 100 mHz
- Frequency stability ≤ 10^{-13} ω^{1/2} and <3·10^{-14} / day
- Ultimate stability and accuracy in space: ~ 10^{-14}

Ultra-stable time-scale comparison on a worldwide basis:
- 30 ps accuracy and clock synchronisation @ 10^{-16} level
- Contribution to TAI
- Test General Relativity:
 - Red shift (improve sensitivity by a factor of 25, target: 2·10^{-6})
 - Search for a drift of the fine structure constant α: 10^{-16} / year (x 20 or more)
 - Search for an anisotropy of the speed of light (10 times more sensitivity)

Active space Hydrogen Maser

ACES Maser prototype (Neuchâtel)

Sapphire bulb to reduce the dimensions of the cavity

Passive space Hydrogen Maser

Application: GALILEO

1 ns (10^{-14}) time error

↓

30 cm position error

Goal: 10^{-14} stability @ 10'000 s (keeping 1 ns over one orbit)

↓

10^{-12} @ 1 s

18 kg, 28 L, 7·10^{-13} @ 1 s
GALILEO

In space: Rubidium, passive Hydrogen Maser (1st generation)
On earth: (quartz), Rubidium, Cesium beams, H Masers (1st generation)

VLBI (Very Long Base Interferometry)

H-Masers (10^{-19} \to 1000-10,000 s) are used to increase the resolution

Angular resolution: \(\sim \lambda / \text{Diameter} \)

1 radio-telescope: \(\sim 1 \text{ mrad} \) (10^{-9} rad)

2 radio-telescopes: \(\sim 1 \text{ mrad} \) (10^{-9} rad)

Earth rotation: 1 mrad \(\sim 6 \text{ km} \to 14 \text{ s} \)

RADIOASTRON Mission (Space VLBI)

Increase the Baseline B from 30'000 to 300'000 km, by putting one of the telescope (and one Maser!) in space.

4) Optical frequency synthesizers and clocks

5) Optical frequency synthesizers and clocks

\[\Delta \omega = Q \rightarrow \text{Laser cooling to increase } \Delta \omega \rightarrow \text{Cold atoms clock} \]

\[\Delta \omega = Q \rightarrow \text{Optical clock } (\nu_0: 10^{10} \to 10^{15} \text{ Hz}) \]

Problem: link the 10 MHz oscillator (user) and the 10^{14} Hz reference frequency

Solution: use an optical comb (for the optical frequency synthesis)

Optical clocks

Basic components
Optical comb (to make the link between \(\nu_0 \) and the user frequency)
Narrow and stable atomic, molecular or ion reference (typically 1 Hz)
Ultra stable laser to probe the transition \(\nu_0 \) (Local Oscillator): \(\Delta \nu < 1 \text{ Hz} \)

Possible approaches (reference)
Trapped ions Cold atoms

6) Summary

- Thanks to the latest discoveries in atomic physics and photonics (or photon engineering) the precision of atomic clocks is being improved down to 10^{-16} and beyond;
- More precisely, it is the manipulation of atoms photons and the availability of tunable laser sources and optical combs which is allowing such dramatic improvements;

$$\text{(in)stability} = \frac{\Delta \omega}{\omega_0} = \frac{1}{\tau_0 - \tau}$$

- Atomic clocks (and stabilized lasers) are key instruments for fundamental physics experiments on ground and in space;
- Compact high performance and miniature atomic clocks find many applications in every day life (positioning, telecoms, etc.)